Bayesian networks
Informacje ogólne
Kod przedmiotu: | 1000-1M11BN |
Kod Erasmus / ISCED: |
11.204
|
Nazwa przedmiotu: | Bayesian networks |
Jednostka: | Wydział Matematyki, Informatyki i Mechaniki |
Grupy: |
Przedmioty monograficzne dla matematyki 2 stopnia Przedmioty obieralne na studiach drugiego stopnia na kierunku bioinformatyka |
Strona przedmiotu: | http://www.mimuw.edu.pl/~noble/courses/BayesianNetworks |
Punkty ECTS i inne: |
6.00
|
Język prowadzenia: | angielski |
Kierunek podstawowy MISMaP: | informatyka |
Rodzaj przedmiotu: | monograficzne |
Skrócony opis: |
This course studies graphical models, a subject that is an interaction between probability theory and graph theory. The topic provides a natural tool for dealing with a large class of problems containing uncertainty and complexity. These features occur throughout applied mathematics and engineering and therefore the material treated has diverse applications in the engineering sciences. |
Pełny opis: |
Course Content Conditional independence, graphs and d- separation, Bayesian networks Markov equivalence for graph structures, the essential graph. Causality and Intervention Calculus Evidence: hard evidence, soft evidence, virtual evidence, Jeffrey’s rule and Pearl’s method of Virtual Evidence. Parametrising the network and sensitivity to parameter changes. Model building and using computer software. Decomposable graphs, junction trees and probility updating. Factor graphs and the sum product algorithm Bayesian inference, multinomial sampling and the Dirichlet integral. Learning the conditional probability potentials for a given graph structure. Learning the graph structure. |
Efekty uczenia się: |
By the end of the course, the student should: 1) understand the concept of factorising a distribution along a directed acyclic graph and what d-separation properties in the graph indicate about conditional independence. 2) understand the use of a directed acyclic graph to describe a causal network and the basics of Pearl's intervention calculus, how interventions may be expressed in terms of sugery on the graph and how to compute conditional probabilities when the conditioning is by intervention. 3) understand how to produce a junction tree from a directed acyclic graph and use it to update a probability distribution when evidence is inserted (the Aalborg algorithm). 4) understand the principles of the Bayesian update for the conditional probabilities for a network with given graph structure, given complete instantiations, incomplete instantiations and fading. 5) understand the principles of constraint based and of search and score structure learning techniques, with particular emphasis on learning the essential graph. For constraint based techniques, the Recursive Autonomy Identification algorithm will be considered in detail, while for search and score, the principles of Monte carlo search techniques will be considered. |
Metody i kryteria oceniania: |
Assessment will be based on tutorial work and seminars based on the recent literature. |
Zajęcia w cyklu "Semestr zimowy 2022/23" (zakończony)
Okres: | 2022-10-01 - 2023-01-29 |
![]() |
Typ zajęć: |
Ćwiczenia, 30 godzin
Wykład, 30 godzin
|
|
Koordynatorzy: | John Noble | |
Prowadzący grup: | John Noble | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: | Egzamin |
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Nauk Ekonomicznych.