Uniwersytet Warszawski, Wydział Nauk Ekonomicznych - Centralny System Uwierzytelniania
Strona główna

Text mining w języku Python

Informacje ogólne

Kod przedmiotu: 2400-ZEWW853
Kod Erasmus / ISCED: 14.3 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0311) Ekonomia Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Text mining w języku Python
Jednostka: Wydział Nauk Ekonomicznych
Grupy: Przedmioty kierunkowe do wyboru - studia II stopnia EM - grupa 1 (3*30h)
Przedmioty kierunkowe do wyboru - studia II stopnia EM - grupa 2 (1*30h)
Przedmioty kierunkowe do wyboru - studia II stopnia EP - grupa 1 (3*30h)
Przedmioty kierunkowe do wyboru - studia II stopnia EP - grupa 4 (1*30h)
Przedmioty kierunkowe do wyboru - studia II stopnia IE - grupa 2 (2*30h)
Przedmioty kierunkowe do wyboru- studia I stopnia EP
Przedmioty wyboru kierunkowego dla studiów licencjackich EM
Przedmioty wyboru kierunkowego dla studiów licencjackich IE
Punkty ECTS i inne: 3.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: polski
Rodzaj przedmiotu:

nieobowiązkowe

Założenia (opisowo):

Uczestnictwo w zajęciach “Wprowadzenie do programowania w języku Python” lub w innym kursie z zbliżonym programem



Skrócony opis:

W ramach zajęć studentki i studenci poznają podstawowe metody przetwarzania języka naturalnego oraz text-miningu.

Nabyte umiejętności umożliwią im samodzielną pracę z wykorzystaniem metod data science na studiach magisterskich lub na przedmiocie „Nowe technologie i wyzwania społeczne”.

Pełny opis:

- Przegląd zastosowań języka Python: pozyskiwanie danych, analiza, wizualizacja

- Przegląd metod Natural Language Processing

- Regular expressions

- Tokenizacja słów, stemming, n-gramy, lematyzacja

- Tagowanie części mowy

- Klasyfikacja tekstu

- Analiza sentymentu

- Wektory TF-IDF

- Analiza Semantyczna, modelowanie tematyczne (LSA, LDA, PCA)

- Wykorzystanie sieci neuronowych w text-miningu

- Wektory słów: Word2Vec

- Klastrowanie tekstów z wykorzystaniem algorytmu t-SNE

- Konsultacje wyboru tematu i metodologii do case study

- Prezentacja case study wykorzystującego wybraną technikę poznaną w trakcie kursu (2 zajęcia)

Literatura:

Zajęcia opierać się będą na materiałach przygotowanych przez prowadzącego lub źródłach internetowych. Literatura obowiązkowa nie jest przewidziana.

Efekty uczenia się:

WIEDZA

- Student zna popularne zastosowania języka Python w różnych obszarach badawczych

- Student zna podstawowe biblioteki służące do analizy tekstu w języku Python

- Student zna popularne metody analizy tekstu stosowane przy użyciu języka Python

- Student zna najważniejsze techniki wizualizacji danych

UMIEJĘTNOŚCI

- Student potrafi stworzyć i zarządzać bazą danych w języku Python

- Student umie przeanalizować duży zbiór tekstowy przy użyciu technik text miningowych

- Student umie sprawnie wizualizować dane z wykorzystaniem dobrych praktyk prezentacji

KOMPETENCJE SPOŁECZNE

- Student jest zaznajomiony z zasadami etycznego oraz legalnego przetwarzania danych

Metody i kryteria oceniania:

Prezentacja końcowa

Zajęcia w cyklu "Semestr letni 2021/22" (zakończony)

Okres: 2022-02-21 - 2022-06-15
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć:
Konwersatorium, 30 godzin więcej informacji
Koordynatorzy: Katarzyna Śledziewska
Prowadzący grup: Kristóf Gyódi
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie na ocenę
Konwersatorium - Zaliczenie na ocenę

Zajęcia w cyklu "Semestr letni 2022/23" (jeszcze nie rozpoczęty)

Okres: 2023-02-20 - 2023-06-18

Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć:
Konwersatorium, 30 godzin więcej informacji
Koordynatorzy: Katarzyna Śledziewska
Prowadzący grup: Kristóf Gyódi, Katarzyna Śledziewska
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie na ocenę
Konwersatorium - Zaliczenie na ocenę
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Nauk Ekonomicznych.
ul. Długa 44/50
00-241 Warszawa
tel: +48 22 55 49 126 https://www.wne.uw.edu.pl/
kontakt deklaracja dostępności USOSweb 6.8.0.0-7 (2022-11-16)