Uniwersytet Warszawski, Wydział Nauk Ekonomicznych - Centralny System Uwierzytelniania
Strona główna

Modele wspomagające podejmowanie decyzji

Informacje ogólne

Kod przedmiotu: 2400-M2EPMWPD
Kod Erasmus / ISCED: 14.3 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0311) Ekonomia Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Modele wspomagające podejmowanie decyzji
Jednostka: Wydział Nauk Ekonomicznych
Grupy: Przedmioty kierunkowe do wyboru - studia II stopnia EP - grupa 3 (4*30h)
Przedmioty obowiązkowe dla II r. studiów magisterskich drugiego stopnia-Ekonomia Przedsiębiorstwa
Punkty ECTS i inne: 4.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.
Język prowadzenia: polski
Rodzaj przedmiotu:

obowiązkowe

Założenia (opisowo):


Wymagania wstępne

Algebra liniowa, Analiza matematyczna. Wymagania formalne

Oczekiwana jest podstawowa znajomość algebry i analizy oraz aktywna postawa w trakcie zajęć polegających na formułowaniu rozwiązywaniu zadań.

Założenia wstępne

Znajomość podstaw mikroekonomii oraz teorii podejmowania decyzji ekonomicznych i funkcjonowania przedsiębiors

Skrócony opis:

Celem zajęć jest praktyczne zapoznanie studentów z metodami optymalizacyjnymi i wielokryterialnymi przydatnymi do rozwiązywania typowych problemów decyzyjnych o charakterze ekonomicznym występujących w przedsiębiorstwie. Dokonany zostanie przegląd metod znanych i stosowanych w ramach badań operacyjnych. Celem jest przekazanie umiejętności wyboru i konstruowania modelu właściwego dla danego problemu decyzyjnego. W wyniku zajęć praktycznych możliwe będzie posłużenie się właściwym algorytmem rozwiązującym, a przede wszystkim poprawne zinterpretowania otrzymanego rozwiązania. Konwersatorium łączy w sobie zajęcia wykładowe i ćwiczeniowe. W ramach kursu przewidziane jest wykorzystanie oprogramowania "Badania operacyjne z komputerem" dostępnego w pracowni komputerowej. Element badawczy: projekt wykonany samodzielnie z uwzględnieniem zagadnień i metod przedstawionych na zajęciach.

Pełny opis:

1. Wprowadzenie i opis przedmiotu zajęć

- teoria podejmowanie decyzji,

- podejmowanie decyzji ekonomicznych,

- optymalizacja, programowanie matematyczne, badania operacyjne.

2. Formułowanie liniowych problemów decyzyjnych:

- model input-output,

- klasyczny problem „diety”,

- zadanie typu "rozkroju",

- klasyczny problem „działalności produkcyjnej”,

- zadanie w liczbach całkowitych,

- zadanie wielokryterialne,

- klasyczne zagadnienie „transportowe”,

- zadanie sieciowe "komiwojażera",

- zadanie sieciowe "maksymalnego przepływu",

- zadanie sieciowe "minimalnego rozpięcia",

- zadanie sieciowe typu "PERT",

- zadanie sieciowe "ścieżki krytycznej".

3. Metoda simpleks jako uniwersalna metoda rozwiązywania zadań liniowych:

- pierwsze dopuszczalne rozwiązanie bazowe,

- zmienne pomocnicze i zmienne sztuczne,

- interpretacja uzyskiwanych wyników,

- degeneracja rozwiązania bazowego.

4. Dualność i zmienne dualne:

- symetryczne i niesymetryczne pary zadań dualnych,

- informacyjna zawartość tablicy simpleksowej,

- interpretacja zmiennych dualnych,

- cena dualna.

5. Dualność i dualna metoda simpleks:

- dualna metoda simpleks,

- interpretacja uzyskiwanych wyników,

- warunki Kuhna-Tuckera,

- interpretacja warunków komplementarności,

- wyznaczanie rozwiązań z warunków Dantziga-Ordena.

6. Analiza postoptymalna:

- zmiana współczynników funkcji kryterium,

- zastosowanie metody simpleks,

- zmiana prawych stron warunków ograniczających,

- zastosowanie dualnej metody simpleks,

- zadanie z parametrem.

7. Programowanie całkowitoliczbowe:

- metoda podziału i ograniczeń,

- metoda cięć,

- programowanie binarne,

- zadanie przydziału.

8. Zadanie transportowe:

- pierwsze dopuszczalne rozwiązanie bazowe,

- poprawianie uzyskanego rozwiązania,

- interpretacja wskaźników optymalności.

9. Zaawansowane zadanie transportowe:

- zadanie niezbilansowane,

- rozwiązanie bazowe zdegenerowane,

- trasy niedopuszczalne,

- skumulowany koszt jednostkowy,

- zadanie dwuetapowe.

10. Programowanie sieciowe:

- elementy teorii grafów,

- najkrótsza droga,

- maksymalny przepływ w sieci,

- minimalne drzewo rozpinające,

- problem komiwojażera,

- PERT i analiza ścieżki krytycznej.

11. Algorytmy ewolucyjne:

- teoria ewolucji,

- ekologiczna interpretacja,

- algorytm genetyczny.

12. Programowanie wielocelowe:

- metody wielokryterialne (ciągłe),

- programowanie celowe,

- uwzględnianie preferencji decydenta.

13. Programowanie wieloatrybutowe:

- metody wieloatrybutowe (dyskretne),

- metoda ELECTRE,

- metoda PROMETE.

14/15. Zajęcia z komputerem:

- algorytm transportowy,

- problem przydziału,

- algorytm simpleks,

- analiza postoptymalna.

- programowanie całkowitoliczbowe,

- programowanie wielokryterialne,

- wybrane problemy sieciowe.

Literatura:

PODSTAWOWA

Trzaskalik T., 2003. Wprowadzenie do badań operacyjnych z komputerem. PWE, Warszawa.

Wagner H.M., 1980. Badania operacyjne. PWE, Warszawa.

UZUPEŁNIAJĄCA

Chiang A.C., 1994. Podstawy ekonomii matematycznej. PWE, Warszawa.

Gass S.I., 1976. Programowanie liniowe. PWN, Warszawa.

Ignasiak E. (red.), 2001. Badania operacyjne. PWE, Warszawa.

Kolupa M., 1976. Elementarny wykład algebry liniowej dla ekonomistów. PWN, Warszawa.

Kukuła K. (red.), 1996. Badania operacyjne w przykładach i zadaniach. PWN, Warszawa.

Moore J.H., Weatherford L.R., 2001. Decision Modeling with Microsoft® Excel. Prentice Hall, Upper Saddle River.

Nykowski I., 1980. Programowanie liniowe. PWE, Warszawa.

Sikora W. (red.), 2008. Badania operacyjne. PWE, Warszawa.

Taylor III B.W., 2001. Introduction to Management Science. Prentice Hall, Upper Saddle River.

Thaler R.H., Sunstein C.R., 2013. Impuls. Jak podejmować właściwe decyzje dotyczące zdrowia, dobrobytu i szczęścia. Zysk i Ska Wydawnictwo, Warszawa.

Efekty uczenia się:

A. Wiedza

1. Student zna podstawy optymalizacji liniowej. Zna podstawy teorii podejmowania decyzji i klasyfikację modeli służacych wspomaganiu podejmowania decyzji.

2. Student zna klasyczne liniowe zadania badań operacyjnych: problem „diety”, problem „działalności produkcyjnej”, problem „transportowy”.

3. Student wie w jaki sposób, w oparciu o modele podstawowe, formułuje się zadanie optymalizacyjne rozwiązujące konkretny problem decyzyjny.

4. Student wie jaka jest charakterystyka wielokryterialnego podejmowania decyzji.

5. Student zna zagadnienia należące do grupy problemów sieciowych: „komiwojażera", "maksymalnego przepływu", "minimalnego rozpięcia", "PERT", "ścieżki krytycznej".

6. Student zna algorytmy rozwiązujące zadanie programowania liniowego: algorytm simpleks, algorytm transportowy.

7. Student ma wiedzę na temat problemu dualności, ze szczególnym uzwględnieniem warunków komplementarności i interpretacji zmiennych dualnych.

8. Student zna analizę postoptymalną i programowanie parametryczne. Wie o metodach badania wpływu zmiany warunków zadania na rozwiązanie optymalne.

9. Student wie jakie oprogramowanie jest pomocne w uzyskiwaniu optymalnych rozwiązań złożonych problemów decyzyjnych.

B. Umiejętności

1. Student potrafi określony problem decyzyjny powiązać z właściwym modelem optymalizacyjnym. Umie zbudować odpowiednie zadanie programowania liniowego, a następnie rozwiązać je oraz zinterpretować wyniki.

2. Student potrafi posłużyć się algorytmem simpleks i algorytmem transportowym w celu uzyskania rozwiązania optymalnego i zinterpretowania jego własności.

3. Student potrafi przeanalizować uzyskane rozwiązanie pod kątem jego wrażliwości na zmiany warunków zadania. Potrafi analizować otrzymane wyniki z punktu widzenia ich przydatności w procesie zarządzania (ceny dualne).

4. Student potrafi wykorzystać wybrane programy komputerowe do wyznaczenia rozwiązania zadania liniowej optymalizacji.

C. Kompetencje społeczne

1. Student ma świadomość, że podejmowanie decyzji o charakterze ekonomicznym może zostać ujęte w ramy formalne w celu poprawy jakości osiąganych rezultatów.

2. Student ma świadomość, że do jego dyspozycji stoją matematyczne metody i narzędzia komputerowe wspomagające procesy podejmowania decyzji.

3. Student potrafi podejmować decyzje sprzyjające sukcesowi w zakresie indywidualnej i społecznej przedsiębiorczości.

KW01, KW02, KW03, KW04, KW05, KU01, KU02, KU03, KU04, KU05, KU06, KU07, KK01, KK02, KK03

Metody i kryteria oceniania:

Zaliczenie na podstawie samodzielnie wykonanego projektu wykorzystującego wybrany model optymalizacji decyzji

Zajęcia w cyklu "Semestr zimowy 2021/22" (zakończony)

Okres: 2021-10-01 - 2022-02-20
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć:
Konwersatorium, 30 godzin więcej informacji
Koordynatorzy: Jerzy Śleszyński
Prowadzący grup: Jerzy Śleszyński
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie na ocenę
Konwersatorium - Zaliczenie na ocenę

Zajęcia w cyklu "Semestr letni 2022/23" (jeszcze nie rozpoczęty)

Okres: 2023-02-20 - 2023-06-18
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć:
Konwersatorium, 30 godzin więcej informacji
Koordynatorzy: Jerzy Śleszyński
Prowadzący grup: Jerzy Śleszyński
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie na ocenę
Konwersatorium - Zaliczenie na ocenę
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Nauk Ekonomicznych.
ul. Długa 44/50
00-241 Warszawa
tel: +48 22 55 49 126 https://www.wne.uw.edu.pl/
kontakt deklaracja dostępności USOSweb 6.8.0.0-7 (2022-11-16)