Uniwersytet Warszawski, Wydział Nauk Ekonomicznych - Centralny System Uwierzytelniania
Strona główna

Przedmioty fakultatywne na matematyce (grupa przedmiotów zdefiniowana przez Wydział Matematyki, Informatyki i Mechaniki)

Jednostka: Wydział Matematyki, Informatyki i Mechaniki Zestaw przedmiotów, który widzisz poniżej został zdefiniowany przez tę jednostkę. Jednostka ta nie musi mieć jednak związku z organizacją wymienionych przedmiotów (jednostką odpowiedzialną za organizację przedmiotu jest jednostka wymieniona w odpowiedniej kolumnie w tabeli poniżej). Więcej o tym przeczytasz w Pomocy.
Grupa przedmiotów: Przedmioty fakultatywne na matematyce
wybierz inną grupę zobacz plany zajęć tej grupy
Filtry
Zaloguj się, aby uzyskać dostęp do dodatkowych opcji

Konkretniej - pokazuj tylko te przedmioty, dla których istnieje otwarta rejestracja taka, że możesz w jej ramach zarejestrować się na przedmiot.

Dodatkowo pokazywane są również te przedmioty, na które jesteś już zarejestrowany (lub składałeś prośbę o zarejestrowanie).

Jeśli chcesz zmienić te ustawienia na stałe, edytuj swoje preferencje w menu Mój USOSweb.
Legenda
Jeśli przedmiot jest prowadzony w danym cyklu dydaktycznym, to w odpowiedniej komórce pojawi się koszyk rejestracyjny. Ikona koszyka zależy od tego, czy możesz się rejestrować na dany przedmiot.
niedostępny (zaloguj się!) - nie jesteś zalogowany
niedostępny - aktualnie nie możesz się rejestrować
zarejestruj - możesz się zarejestrować
wyrejestruj - możesz się wyrejestrować (lub wycofać prośbę)
prośba - złożyłeś prośbę o zarejestrowanie (i nie możesz jej już wycofać)
zarejestrowany - jesteś pomyślnie zarejestrowany (i nie możesz się wyrejestrować)
Kliknij na ikonę "i" przy koszyku, aby uzyskać dodatkowe informacje.

2021Z - Semestr zimowy 2021/22
2021L - Semestr letni 2021/22
2022Z - Semestr zimowy 2022/23
2022L - Semestr letni 2022/23
(zajęcia mogą być semestralne, trymestralne lub roczne)
Opcje
2021Z 2021L 2022Z 2022L
1000-134AG2 brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Elementy teorii grup, teorii ciał, teorii modułów i teorii pierścieni nieprzemiennych. Teoria grup: grupy wolne, grupy rozwiązalne i produkty półproste grup. Teoria ciał: teoria Galois i jej zastosowania. Teoria modułów: struktura modułów skończenie generowanych nad dziedzinami ideałów głównych. Pierścienie nieprzemienne: algebry macierzy, algebry z dzieleniem, twierdzenie Frobeniusa, algebry wielomianów skośnych i algebry Weyla.

Strona przedmiotu
1000-135ALP brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przedmiot stanowi wprowadzenie do algebry przemiennej i jest wymagany do

rejestracji na przedmiot geometria algebraiczna. Na wykładzie zostaną

wprowadzone pojęcia związane z pierścieniami przemiennymi i modułami nad

tymi pierścieniami, i zostaną dowiedzione podstawowe twierdzenia dotyczące

tych klas obiektów algebraicznych; ważną klasą rozważanych pierścieni będą

pierścienie noetherowskie.

Strona przedmiotu
1000-135AGL brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Klasyczne grupy liniowe, abstrakcyjne grupy Lie, grupy zwarte.

Odpowiedniość grup i algebr Liego, czyli klasyczna teoria Liego. Odwzorowanie Exp.

Abstrakcyjne podejście do algebr Liego. Klasyfikacja prostych algebr Liego

Reprezentacje klasycznych grup i algebr Lie przez najwyzsze wagi. Przestrzenie jednorodne.

Strona przedmiotu
1000-135ASW brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład ma na celu przedstawienie klasycznych rezultatów dotyczacych struktury i teorii reprezentacji

liniowych algebr skonczonego wymiaru nad ciałem. Omówione beda: odpowiedniosc pomiedzy teoria

modułów i teoria reprezentacji, moduły proste, radykał algebry i klasykacja półprostych algebr łacznych.

Podane beda zastosowania do teorii reprezentacji grup skonczonych, poprzez rezultaty dotyczace algebr

grupowych i teorie charakterów grup. Omówione zostana przykłady zastosowan. Podane beda podstawowe

informacje o skonczenie wymiarowych algebrach Lie’go i ich reprezentacjach. Jako narzedzie w tej teorii,

omówione zostana algebry obwiednie i ich własnosci.

Strona przedmiotu
1000-135AN brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Metody numerycznego rozwiązywania ważnych zadań obliczeniowych matematyki stosowanej: zagadnienia własnego, wielkich układów równań liniowych, układów równań nieliniowych oraz całkowania wielowymiarowego.

Strona przedmiotu
1000-135AP brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest przedstawienie podstaw ekonomicznych oraz narzędzi matematycznych służących znajdowaniu optymalnych inwestycji w warunkach niepewności. W ramach wykładu zostaną omówione rozwiązania klasycznego modelu Markowitza w kilku podstawowych wersjach: dla wielu instrumentów

ryzykownych, dla instrumentów ryzykownych oraz instrumentu bezryzykownego, zarówno w przypadku braku ograniczen na krótka sprzedaż jak też w obecności tych ograniczeń. Wprowadzone będą także nowoczesne miary ryzyka VaR i CvaR, omówione ich podstawowe własnosci oraz wykorzystanie do znajdowania portfeli optymalnych.

Strona przedmiotu
1000-135ANZ brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Twierdzenie Weierstrassa (o rozkładzie na iloczyn) i twierdzenie Mittag--Lefflera. Twierdzenie Rungego.

Funkcje wieloznaczne, przedłużenia analityczne, monodromia.

Powierzchnie Riemanna. Funkcje analityczne na powierzchniach Riemanna. Przykłady i informacje na temat podstawowych zagadnień teorii powierzchni Riemanna.

Podstawowe pojęcia teorii funkcji analitycznych wielu zmiennych zespolonych; równania Cauchy--Riemanna, rozwijalność w szeregi potęgowe, przedłużenia analityczne, problemy Cousina.

Strona przedmiotu
1000-135APZ brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Wykład monograficzny - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Kurs jest wprowadzeniem do ogólnej teorii aproksymacji i złożonosci obliczeniowej zadań analizy numerycznej. Obejmuje zarówno klasyczną aproksymację wielomianową funkcji gładkich jak i aproksymacje bazujaca jedynie na informacji czesciowej o funkcji. Przedstawione zostana takze konstrukcje algorytmów optymalnych w danym modelu obliczeniowym.

Strona przedmiotu
1000-134BAD brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Funkcje i struktury systemów baz danych oraz przegląd modeli danych. Relacyjne bazy danych. Języki zapytań do relacyjnych baz danych. SQL. Projektowanie baz danych, teoria postaci normalnych i modelowanie związków encji. Przetwarzanie transakcji. Fizyczne aspekty wykonywania zapytań i składowania danych, metody optymalizacji zapytań. Niestandardowe modele baz danych: obiektowe bazy danych, dedukcyjne bazy danych (Datalog) i rozproszone bazy danych.

Strona przedmiotu
1000-135EKN brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Studenci, którzy wcześniej zaliczyli przedmiot monograficzny Ekonometria (1000-1M02EK) nie mogą zaliczać Ekonometrii (1000-135EKN).

Strona przedmiotu
1000-135EAR brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Splot funkcji i jego zastosowania do aproksymacji. Szeregi Fouriera i badanie ich zbieżności. Przestrzeń Schwartza i transformata Fouriera. Funkcja maksymalna Hardy’ego-Littlewooda. Funkcje monotoniczne, o wahaniu ograniczonym i absolutnie ciągłe. Funkcje lipszycowskie: ich rozszerzenia i własności aproksymacyjne. Przykłady powiązań pomiędzy teorią równań cząstkowych, teorią aproksymacji, analizą harmoniczną i zespoloną oraz teorią interpolacji.

Strona przedmiotu
1000-135GEA brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przedmiot stanowi wprowadzenie do geometrii algebraicznej. Na wykładzie zostaną wprowadzone rozmaitości algebraiczne i omówione zostaną ich podstawowe własności geometryczne. Pod koniec wykładu zostaną podane przykłady zastosowań geometrii algebraicznej (w zależności od preferencji wykładowcy).

Strona przedmiotu
1000-135GM1 brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe pojęcia i twierdzenia geometrii elementarnej wraz z licznymi zastosowaniami. Własności miarowe kątów oraz odcinków w powiązaniu z okręgami. Izometrie oraz nierówność trójkąta: problemy minimalizacyjne, m.in. Torricelliego-Fermata oraz Fagnano. Podobieństwo oraz pole: twierdzenia Menelausa, Cevy, Ptolemeusza, Newtona, Gaussa, okrąg Apoloniusza. Grupy przekształceń: izometrie, podobieństwa, dylatacje.

Strona przedmiotu
1000-135GM2 brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Inwersja, przekształcenia afiniczne oraz stożkowe w ujęciu czysto geometrycznym. Ogniska i kierownice stożkowych, własności izogonalne stożkowych, przekroje stożka obrotowego. Liczne zastosowania i geometryczne dowody najsłynniejszych twierdzeń m.in.: Gaussa-Bodenmillera, Brianchona, o motylku, Ponceleta (dla trójkąta), Feuerbacha, o łańcuchach Steinera, Newtona oraz formuł Kartezjusza, Eulera i Fussa.

Strona przedmiotu
1000-135GR brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Abstrakcyjne rozmaitości gładkie, przekształcenia gładkie. Wektory styczne i pochodna przekształcenia gładkiego. Pola wektorowe jako różniczkowania i potoki. Nawias Lie. Wiązka styczna. Wiązki wektorowe i operacje na nich. Pola tensorowe. Foliacje i twierdzenie Frobeniusa. Formy rózniczkowe, pochodna zwnętrzna i twierdzenie Stokesa. Koneksje afiniczne, metryki Riemanna, geodezyjne,krzywizna, tensor krzywizny i tensor Ricci. Rozmaitości geodezyjnie zupełne. Rozmaitości stałej krzywizny (space form problem). Grupy i algebry Liego.

Strona przedmiotu
1000-135GK brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 15 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 15 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład ma na celu zapoznanie uczestników z podstawowymi algorytmami i strukturami danych stosowanymi w grafice komputerowej. Przedstawiane wiadomości dotyczą algorytmów grafiki rastrowej, geometrii dwu- i trójwymiarowej, elementów geometrii obliczeniowej, modelowania geometrycznego, algorytmów widoczności i modeli oświetlenia.

Strona przedmiotu
1000-135IFI brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład przedstawia podstawowe instrumenty finansowe: kontrakty na przyszłą stopę procentową, kontrakty wymiany procentowej, kontrakty forward i futures, kontrakty opcyjne - opcje waniliowe, wybrane opcje egzotyczne oraz opcje na stopę procentową. Dla każdego z tych instrumentów przedstwione są: struktura instrumentu i jego zastosowania, metoda wyceny oraz analiza wrażliwości - z uwzględnieniem praktyki rynkowej.

Strona przedmiotu
1000-135RRJ brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Zachowania graniczne trajektorii równań różniczkowych zwyczajnych. Zbiory niezmiennicze. Równanie różniczkowe jako układ dynamiczny.

Strona przedmiotu
1000-214bJAO brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe modele obliczeń (automaty, gramatyki, maszyna Turinga), związki między trudnością problemów obliczeniowych a strukturalną złożonością modeli obliczeń. Hierarchia Chomsky'ego. Matematyczny sens pojęcia obliczalności oraz jego ograniczenia, a także - w zarysie - podstawowe zagadnienia złożoności obliczeniowej.

Strona przedmiotu
1000-135LOM brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wprowadzenie do klasycznych zagadnień logiki matematycznej z elementami teorii modeli.

Jeśli w wykładzie nie będą uczestniczyć słuchacze obcojęzyczni, wykład będzie prowadzony po polsku.

Strona przedmiotu
1000-135MUZ brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Model probabilistyczny ubezpieczeń życiowych.

Strona przedmiotu
1000-135MGT brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe pojecia teorii kategorii, kategorie addytywne i abelowe; Iloczyn tensorowy w kategorii modułów. Moduły projektywne, injektywne i rezolwenty. Grupy z gradacja; kompleksy łancuchowe i ich homologie. Funktory pochodne Hom i produktu tensorowego. Presnopy, snopy i ich kohomologie.

Kohomologie symplicjalne i kohomologie Cecha. Nakrycia i wiazki główne; interpretacja kohomologiczna. W przypadku udziału słuchaczy obcojezycznych wykład jest prowadzony po angielsku.

Strona przedmiotu
1000-135MMN brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest przedstawienie podstawowych metod układów dynamicznych i teorii równań różniczkowych cząstkowych niezbędnych do współczesnego opisu zjawisk przyrodniczych i społecznych.

Strona przedmiotu
1000-135MOF brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest przedstawienie podstawowych metod wyceny instrumentów finansowych. Na wykładzie będą omawiane metody drzewa dwumianowych, metody Monte Carlo oraz numeryczne rozwiązania równania Blacka-Scholesa. Wykład będzie zawierał niezbędne wiadomości teoretyczne na temat zbieżności schematów numerycznych rozwiązywania stochastycznych równań Ito, podstawowe wiadomości o analitycznych własnościach równań parabolicznych oraz o zbieżności schematów numerycznych dla tych równań. Teoretyczny materiał wykładu będzie ilustrowany przykładami zastosowania omawianych metod do wyceny konkretnych instrumentów finansowych.

Strona przedmiotu
1000-135MAG brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem zajęć jest przedstawienie podstawowych zagadnień teorii liczb, algebry oraz analizy w zakresie wymagań obowiązującej podstawy programowej z matematyki. Zostaną też przedstawione rozwiązania metodyczne oraz dobre praktyki związane z nauczaniem tych zagadnień, zarówno na poziomie szkoły podstawowej jak i ponadpodstawowej. Zajęcia będą wzbogacone o treści rozwijające zainteresowanie uczniów matematyką w zakresie omawianych tematów.

Strona przedmiotu
1000-135MGE brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest przedstawienie szerokiego zestawu metod nauczania geometrii w szkole podstawowej i średniej.

Strona przedmiotu
1000-135MI1 brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 15 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 15 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Lekcje informatyki w szkołach różnych typów i poziomów powinny dostarczać uczniom zarówno wiedzy ogólnej o informatyce i teorii informacji, a także uczyć programowania. "Metodyka nauczania informatyki I" przedstawia sposoby budowania i prowadzenia lekcji informatyki poświęconych nauce programowania oraz nauce teoretycznej informatyki. Będziemy mówić o metodach uczenia programowania, o konstrukcjach modeli pomocniczych w nauczaniu i pułapkach czyhających na lekcjach.

Strona przedmiotu
1000-135MRP brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Na zajęciach przewiduje się omówienie metodyki nauczania

a) statystyki opisowej (1 wykład),

b) elementarnej kombinatoryki (4 wykłady),

c) elementarnego rachunku prawdopodobieństwa (10 wykładów)oraz kształtowanie intuicji probabilistycznych (zadania z ciekawymi wynikami numerycznymi i paradoksy w teorii prawdopodobieństwa).

Strona przedmiotu
1000-135MR brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 15 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 15 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest przedstawienie podstawowych teoretycznych i praktycznych zagadnien dotyczacych

miar ryzyka finansowego, w tym roli w zarzadzaniu ryzykiem w instytucjach finansowych. Ponadto bedzie

omówiony zwiazek miar ryzyka z teoria ubezpieczen.

Strona przedmiotu
1000-135MIE brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Mikroekonomia - dziedzina ekonomii zajmującą się mechanizmami wyboru jednostek i interakcjami pomiędzy jednostkami w gospodarce. Na wykładzie będziemy łączyć wprowadzenie do mikroekonomii z zaawansowaną mikroekonomią matematyczną. Zakres przedmiotu to teoria wyboru, zagadnienia wyboru producentów i konsumentów, wybór w warunkach niepewności oraz różne pojęcia równowagi na rynkach.

Strona przedmiotu
1000-135MBM brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład dotyczy szeroko pojetego modelowania matematycznego w biologii i medycynie. Jego podstawe stanowią modele ekologiczne, budowne na bazie równan różniczkowych i różnicowych, teorii grafów i teorii gier, poszerzone o modele reakcji odpornoociowej i podstawy klasycznej genetyki (teoria Mendla) w kontekście łancuchów Markowa.

Strona przedmiotu
1000-135MMK brak brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis
Nie podano opisu skróconego, przejdź do strony przedmiotu aby uzyskać więcej danych.
Strona przedmiotu
1000-135IP1 brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład opisuje metody modelowania rynków instrumentów pochodnych, wyceny i zabezpieczania kontraktów.

Strona przedmiotu
1000-135IP2 brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład będzie opisywał modelowanie rynków obligacji, modele stopy krótkoterminowej, instrumenty pochodne stopy procentowej (FRA, caps, floors, swaptions itp.), modele stopy forward a także zagadnienia kalibracji modeli do danych rynkowych.

Strona przedmiotu
1000-135MMS brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest przybliżenie tematyki prac badawczych prowadzonych na Wydziale w zakresie matematyki stosowanej, w celu ułatwienia studentom zaplanowania swoich studiów II stopnia oraz tematyki przyszłej pracy magisterskiej. Zaprezentowanych będzie kilka klasycznych modeli matematyki stosowanej w fizyce, biologii, ekonomii i naukach społecznych.

Strona przedmiotu
1000-135NRR brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład obejmuje konstrukcję, analizę i implementację podstawowych metod numerycznego rozwiązywania zagadnień początkowych i brzegowych dla równań różniczkowych zwyczajnych oraz zagadnień brzegowych i początkowo-brzegowych dla trzech podstawowych typów równań różniczkowych cząstkowych: eliptycznych parabolicznych i hiperbolicznych.

Strona przedmiotu
1000-135ONA brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Rozwiązywanie problemów obliczeniowych współczesnej matematyki stosowanej przy użyciu nowoczesnego oprogramowania i sprzętu komputerowego.

Strona przedmiotu
1000-135OPL brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Na wykładzie zostaną omówione metody sympleks ( w tym również dwufazowa i dualna), zadanie transportowe, zadania całkowitoliczbowe oraz aspekty geometryczne.

Strona przedmiotu
1000-135OPN brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Metody znajdowania ekstremów (minimów i maksimów) funkcji wielu zmiennych na zbiorach zadanych przez układ równości i nierówności nieliniowych. Metoda mnożników Lagrange'a, warunki Kuhna-Tuckera, techniki dualne. Szczególną uwagę poświęcimy optymalizacji wypukłej.

Strona przedmiotu
1000-135PS brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe własności procesu Wienera i procesu Poissona. Procesy Markowa, funkcje przejścia, półgrupy przez nie generowane, rezolwenta, generator. Markowskość mocnego rozwiązania stochastycznych równań różniczkowych o lipschitzowskich współczynnikach. Procesy dyfuzji. Wzór Feynmana-Kaca. Związki z równaniami cząstkowymi. Probabilistyczne rozwiązywanie zagadnienia Dirichleta.

Strona przedmiotu
1000-135PSB brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wyłozenie podstaw teoretycznych analizy stochastycznej (łancuchy Markowa, proces Poissona, procesy urodzin i smierci, procesy gałazkowe, równanie M, równania Fokkera-Plancka, Kołmogorowa, Langevina/Ito) bedzie zintegrowane z konkretnymi modelami biologicznymi (ekspresja i regulacja genów, kanały jonowe) oraz modelami teorii gier ewolucyjnych.

Strona przedmiotu
1000-135POC brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Paradygmat programowania obiektowego. Praktyczna nauka programowania obiektowego w C++.

Strona przedmiotu
1000-135RP2 brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Rachunek Prawdopodobieństwa II zawiera wprowadzenie do teorii zbieżnosci

według rozkładu (wykazanie równoważności wielu definicji, Centralne

Twierdzenie Graniczne) i zastosowań w tej teorii elementów analizy

harmonicznej (własności funkcji charakterystycznych). Ponadto omówione

zostaną elementy teorii martyngałów (czyli, mowiąc w uproszczeniu, gier

sprawiedliwych) i łańcuchów Markowa (pewnej klasy systemów losowych

ewoluujących w czasie).

Strona przedmiotu
1000-135RP2* brak brak brak
Zajęcia przedmiotu
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Rachunek Prawdopodobieństwa II zawiera wprowadzenie do teorii zbieżnosci według rozkładu (wykazanie równoważności wielu definicji, Centralne

Twierdzenie Graniczne) i zastosowań w tej teorii elementów analizy harmonicznej (własności funkcji charakterystycznych). Ponadto omówione

zostaną elementy teorii martyngałów (czyli, mowiąc w uproszczeniu, gier sprawiedliwych) i łańcuchów Markowa (pewnej klasy systemów losowych

ewoluujących w czasie).

Strona przedmiotu
1000-135ROZ brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Omawiane są następujące tematy: lokalna geometria zespolona, zespolone formy różniczkowe, rozmaitości

kaehlerowskie, kohomologie Dolbeault, teoria Hodge’a, wiązki wektorowe, klasy Cherna.

Strona przedmiotu
1000-135RRC brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład stanowi wprowadzenie do teorii liniowych równań różniczkowych cząstkowych. Pierwsza część wykładu koncentruje się na klasycznej teorii równań pierwszego i drugiego rzędu. Druga część stanowi wprowadzenie do nowoczesnych metod: teorii przestrzeni Sobolewa i teorii słabych rozwiązań równań eliptycznych. Wykład nie wymaga wcześniejszego przygotowania z teorii równań różniczkowych cząstkowych. Wskazane jest natomiast przejście podstawowego kursu Analizy funkcjonalnej, przynajmniej równolegle. Pewne zagadnienia omawiane na wykładzie Wstęp do równań różniczkowych cząstkowych zostaną omówione szerzej, dotyczy to przede wszystkim teorii słabych rozwiązań, pojawią się także elementy teorii równań nieliniowych.

Strona przedmiotu
1000-135STB brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Systematyczne wprowadzenie do statystyki bayesowskiej, która zdobywa coraz wieksza popularnosc, ma róznorodne zastosowania, a na kursowych wykładach ze statystyki jest traktowana pobieznie. Przedmiot przeznaczony dla matematyków, dostepny równiez dla informatyków zainteresowanych statystyka.

Strona przedmiotu
1000-135SW brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

This course presents multivariate statistical theory and techniques. The topics covered are:

1) Asymptotic log likelihood ratio tests; Wald, Rao, Pearson; logistic regression.

2) Generalised Linear Models.

3) Model selection criteria (for example: AIC, BIC)

4) Shrinkage methods for linear regression (e.g. PCR, PSLR, Ridge and LASSO).

5) The multivariate Gaussian distribution, parameter estimation, the Wishart distribution.

6) Statistical tests for multivariate Gaussian data. (e.g. Hotelling)

7) The data matrix, geometrical representations and distances.

8) Principal Component Analysis and Canonical Correlation Analysis.

9) Non-parametric Density Estimation: histograms, kernel density estimation methods, optimal bin width, projection pursuit methods for multivariate densities.

10) Discriminant Function Analysis.

11) Clustering techniques, including logistic regression, self organising maps (SOM) and the EM algorithm as a tool for clustering and semi-supervised learning.

Strona przedmiotu
1000-135SST brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Laboratorium - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład jest poświęcony komputerowej symulacji zmiennych losowych i procesów stochastycznych. Zawiera również wstęp do metod Monte Carlo, czyli algorytmów zrandomizowanych.

Strona przedmiotu
1000-135SYD brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 15 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 15 godzin
  • Laboratorium - 15 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Przegląd metod klasyfikacji i intelegentne wspomagania podejmowania decyzji na podstawie niepełnych i niepewnych informacji. Przedstawione będą metody pochodzące z różnych dziedzin, takich jak uczenie maszynowe, statystyka, teoria zbiorów rozmytych, teoria zbiorów przybliżonych. Przewidziane są zajęcia praktyczne z systemami wspomagania decyzji oraz projekty do samodzielnych rozwiązań.

Strona przedmiotu
1000-135SC brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

The course presents probabilistic and statistical theory for modelling time series data and forecasting. There is particular emphasis on the Box-Jenkins method of ARIMA processes, also further developments; GARCH modelling, cointegration and neural networks are also considered. The R programming language is used for implementation.

Strona przedmiotu
1000-135TL brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowy wykład z teorii liczb. W pewnych miejscach posiłkuje się podstawowymi pojęciami i faktami z algebry abstrakcyjnej. Z drugiej strony motywuje dodatkowo te pojęcia.

Strona przedmiotu
1000-135TM brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład teoria miary jest wykładem do zrozumienia którego nie jest potrzebny żaden wykład spoza listy wykładów obowiązkowych na pierwszym i drugim roku studiów. Zawarte w nim treści systematyzują i rozszerzają elementarna wiedze na temat teorii miary nabyta na zajęciach z analizy matematycznej na drugim roku studiów, w szczególności treści zawarte w programie analizy matematycznej zostaną przytoczone informacyjnie, a w razie potrzeby dokładniej przypomniane na ćwiczeniach. Celem wykładu jest umożliwienie lepszego zrozumienia istotnych pojęć i narzędzi matematycznych używanych miedzy innymi w równaniach cząstkowych, analizie funkcjonalnej, rachunku prawdopodobieństwa, układach dynamicznych i wielu innych działach matematyki, z drugiej zaś strony przedstawienie interesującej teorii matematycznej.

Strona przedmiotu
1000-135TMN brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład omawia podstawowe zagadnienia teorii mnogości (liczby porządkowe i kardynalne, aksjomaty teorii mnogości) oraz wprowadza elementy kombinatoryki nieskończonej.

Jeśli w wykładzie nie uczestniczą słuchacze obcojęzyczni, wykład będzie prowadzony po polsku.

Strona przedmiotu
1000-135TRU brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe zagadnienia kalkulacji składki.

Strona przedmiotu
1000-135TST brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład jest wstępem do współczesnej teorii sterowania. Teoria jest ilustrowana licznymi przykładami z ekonomii, biologii, medycyny, fizyki i techniki.

Strona przedmiotu
1000-135TA brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Grupy homotopii. Korozwłóknienia i rozwłóknienia. Ciąg dokładny grup homotopii rozwłóknienia. Aksjomaty teorii (ko-)homologii. Homologie singularne. Stopień odwzorowań sfer. Homologie komórkowe. Kohomologie de Rhama i tw. de Rhama. Struktury multyplikatywne (ko-)homologii singularnych. Orientacja rozmaitości topologicznych i twierdzenia o dualności. Indeks przecięcia i zaczepienia podrozmaitości.

Strona przedmiotu
1000-134TP2 brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

W części pierwszej wykładu zostanie omówione pojecie grupy podstawowej przestrzeni topologicznej i jej zwiazku z kategorią przestrzeni nakrywajacych. Druga część wykładu bedzie poświęcona wprowadzeniu do teorii homologii singularnych przestrzeni topologicznych. Na zakończenie przedstawione będą zastosowania wprowadzonych wcześniej pojęć.

Jeśli w wykładzie nie uczestniczą słuchacze obcojęzyczni, będzie on prowadzony po polsku.

Strona przedmiotu
1000-135TOG brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest przedstawienie szeregu głównych pojęć i twierdzeń topologii ogólnej, zarówno ważnych i eleganckich z punktu widzenia tej dziedziny, jak też istotnych ze względu na zastosowania w topologii i matematyce jako całości. Centralne znaczenie dla wykładu ma pojęcie zwartości i jego warianty.

Strona przedmiotu
1000-135UD brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Teoria układów dynamicznych bada długookresową ewolucję układów odbywającą się na mocy niezmiennych w czasie i deterministycznych reguł. Ewolucja może zatem być zadana przez iteracje pewnego przekształcenia (czas dyskretny) lub np. rozwiązania równania różniczkowego (czas ciągły). Teoria opisuje regularne i chaotyczne właściwości pewnych klas układów, bada ich stabilność oraz określa ich niezmienniki (takie jak np. entropia).

Strona przedmiotu
1000-135WAS brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe własności procesu Wienera, martyngałów z czasem ciągłych, martyngałów lokalnych, semimartyngałów. Wahanie kwadratowe semimartyngałów ciągłych i twierdzenie Dooba-Meyera. Całka Itô i jej podstawowe własności. Wzór Itô. Twierdzenie Lévy’ego o reprezentacji, zamiana miary, twierdzenie Girsanowa. Mocne i słabe rozwiązania równań stochastycznych. Związki równań stochastycznych z równaniami o pochodnych cząstkowych.

Strona przedmiotu
1000-135WGR brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowe pojęcia geometrii różniczkowej: podrozmaitości przestrzeni euklidesowych i wektory styczne; krzywe i metoda ruchomego reperu. Wzory Freneta-Serreta - krzywizna i torsja krzywych. Powierzchnie w przestrzeni 3- wymiarowej, I i II forma podstawowa; krzywizny główne i krzywizna Gaussa. Theorema egregium i geometria wewnętrzna powierzchni. Krzywe geodezyjne na powierzchniach. Pochodna kowariantna i przeniesienie równoległe. Twierdzenie Gaussa-Bonneta. Abstrakcyjne rozmaitości Riemanna; płaszczyzna hiperboliczna.

Strona przedmiotu
1000-135WMF brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Skrócony opis: wykład pełni rolę wstępu do zagadnień matematyki finansowej i ubezpieczeniowej. Przygotowuje do uczestnictwa w bardziej zaawansowanych wykładach poświęconych tej tematyce,

Zakres materiału pokrywa znaczną częśc zagadnień wymaganych na państwowych egzaminach aktuarialnych w zakresie matematyki finansowej.

Strona przedmiotu
1000-135WPS brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wprowadzenie podstawowych pojęć teorii procesów stochastycznych. Definicja i własności procesu Poissona i procesu Wienera. Wstępne informacje o procesach Markowa i martyngałach z czasem ciągłym.

Strona przedmiotu
1000-135WRC brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wprowadzenie do teorii liniowych równań różniczkowych cząstkowych. Wybrane elementy teorii dystrybucji i przestrzeni Sobolewa; zastosowania do zagadnień eliptycznych, parabolicznych i hiperbolicznych.

Strona przedmiotu
1000-135WTG brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Będziemy omawiać podstawowe pojęcia i aparat matematyczny teorii gier strategicznych i kooperacyjnych, oraz wybrane zastosowania w naukach społecznych, ekonomii i biologii.

Strona przedmiotu
1000-135WTL brak brak
Zajęcia przedmiotu
Semestr zimowy 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr zimowy 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Podstawowym celem wykładu jest przedstawienie wstepu do teorii liczb, jako jednego z najwazniejszych

działów matematyki. W dalszej jego czesci przedstawione sa przykłady zastosowania tej teorii do

kryptografii oraz teorii kodowania.

Strona przedmiotu
1000-135WUD brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Wykład stanowi wprowadzenie w niektóre zagadnienia teorii układów dynamicznych na podstawie analizy przykładowych modeli. Opisana jest m.in. dynamika przekształceń na odcinku, okręgu, torusie i płaszczyźnie zespolonej.

Strona przedmiotu
1000-135ZAF brak brak
Zajęcia przedmiotu
Semestr letni 2021/22
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Semestr letni 2022/23
  • Ćwiczenia - 30 godzin
  • Wykład - 30 godzin
Grupy przedmiotu

Skrócony opis

Celem wykładu jest zaprezentowanie przykładów zastosowań narzędzi i metod analizy funkcjonalnej w innych działach matematyki. Przedstawiona zostanie teoria spektralna dla operatorów zwartych na przestrzeniach Banacha oraz operatorów normalnych na przestrzeniach Hilberta i jej znaczenie dla równań różniczkowych. Omówimy też transformatę Fouriera, teorię dystrybucji, algebry splotowe, a także słabe i *-słabe topologie na przestrzeniach liniowo topologicznych oraz przykłady ich naturalnego występowania.

Strona przedmiotu
ul. Długa 44/50
00-241 Warszawa
tel: +48 22 55 49 126 https://www.wne.uw.edu.pl/
kontakt deklaracja dostępności USOSweb 6.8.0.0-7 (2022-11-16)