Uniwersytet Warszawski, Wydział Nauk Ekonomicznych - Centralny System Uwierzytelniania
Strona główna

Fizyka matematyczna i teoria ergodyczna układów sieciowych - model Isinga, kwazikryształy

Informacje ogólne

Kod przedmiotu: 1000-1M22MIK
Kod Erasmus / ISCED: 11.1 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0541) Matematyka Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Fizyka matematyczna i teoria ergodyczna układów sieciowych - model Isinga, kwazikryształy
Jednostka: Wydział Matematyki, Informatyki i Mechaniki
Grupy: Przedmioty monograficzne dla matematyki 2 stopnia
Punkty ECTS i inne: 6.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: angielski
Rodzaj przedmiotu:

monograficzne

Efekty uczenia się:

Wiedza i umiejętności:

1. Zna ferromagnetyczny model Isinga, potrafi obliczyć magnetyzację w prostych modelach sieciowych.

2. Potrafi sformułować zasady wariacyjne.

3. Potrafi przedstawić proste modele gazów sieciowych bez okresowych stanów podstawowych.

Kompetencje społeczne:

Umie rozmawiać z fizykami.

Metody i kryteria oceniania:

Kryteria zaliczania: Zadania domowe 50% Mały projekt 50%

Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)

Okres: 2024-02-19 - 2024-06-16
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Jacek Miękisz
Prowadzący grup: Jacek Miękisz
Lista studentów: (nie masz dostępu)
Zaliczenie: Egzamin
Skrócony opis:

Wykład poświęcony będzie badaniu matematycznych modeli układów oddziałujących cząstek umieszczonych w węzłach regularnych sieci.

Omówimy model Isinga oddziałujących spinów oraz teorię perkolacji. Są to działy nowoczesnej probabilistyki, w szczególności jest to tematyka rozwijana przez Stanislava Smirnova i Hugo Dominila - Copin, laureatów medalu Fieldsa, odpowiednie w 2010 i w 2022 roku. Omówimy ich wyniki.

Przedyskutujemy 18. problem Hilberta i jego związki z kwazikryształami i z teorią ergodyczną symbolicznych układów dynamicznych.

Nie zakładamy znajomości fizyki ani matematyki wykraczającej poza wykłady kursowe z dwóch pierwszych lat studiów.

Pełny opis:

Wykład poświęcony będzie badaniu matematycznych modeli układów oddziaływujących cząstek umieszczonych w węzłach regularnych sieci. Jako przykład ilustrujący istnienie magnesów przedstawiony zostanie model Isinga oddziałujących spinów. Udowodnimy spontaniczne złamanie symetrii - istnienie przejścia fazowego.

Przedyskutujemy 18. problem Hilberta i jego związki z kwazikryształami - mikroskopowymi modelami oddziałujących cząstek, dla których minimum funkcjonału energii osiągane jest tylko dla nieokresowych konfiguracji. Przedstawione zostaną nieokresowe parkietaże płaszczyzny i ich związki z teorią ergodyczną symbolicznych układów dynamicznych. Zajmiemy się też układami jednowymiarowymi - ciągami Thue-Morse'a i Fibonacciego i ogólnie układami Sturma.

Zaprezentowane zostaną fundamentalne otwarte problemy: istnienie nieokresowych miar Gibbsa i istnienie jednowymiarowych nieergodycznych automatów komórkowych.

Nie zakładamy znajomości fizyki ani matematyki wykraczającej poza wykłady kursowe z dwóch pierwszych lat studiów.

Plan wykładów

1. Dlaczego istnieją magnesy? Model Isinga odziałujących spinów

2. Spontaniczne złamanie symetrii w ferromagnetycznym modelu Isinga

3. Zasady wariacyjne - minimalizacja funkcjonału energii swobodnej

4. Ścisłe rozwiązanie jedno-wymiarowego modelu Isinga.

Przybliżenie pola średniego w dwu-wymiarowym modelu Isinga

5. Uogólnienie modelu Isinga - klasyczne gazy sieciowe

6. Perkolacja

7. Nieokresowe parkietaże - 18 problem Hilberta

8. Mikroskopowe modele kwazikryształów - układy z nieokresowymi stanami okresowymi

9. Nieokresowe miary Gibbsa

10. Symboliczne układy dynamiczne - ciągi Thue-Morse'a i Fibonacciego

11. Teoria ergodyczna układów nieokresowych

12. Topologia układów nieokresowych

13. Jednowymiarowe układy oddziałujących cząstek bez okresowych stanów podstawowych

14. Automaty komórkowe

Literatura:

1. Sacha Friedli and Yvan Velenik, Statistcal Mechanics of Lattice Systems - A Concrete Mathematical Introduction, Cambridge University Press, 2018

Książka dostępna on-line https://www.unige.ch/math/folks/velenik/smbook/

2. Jean Bricmont, Making Sense of Statistical Mechanics, Springer, 2022

https://link.springer.com/book/10.1007/978-3-030-91794-4#toc

3. Michael Baake and Uwe Grimm, Aperiodic Order, vol 1, A Mathematical Invitation, Cambridge University Press, 2013

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Nauk Ekonomicznych.
ul. Długa 44/50
00-241 Warszawa
tel: +48 22 55 49 126 https://www.wne.uw.edu.pl/
kontakt deklaracja dostępności mapa serwisu USOSweb 7.1.0.0-7 (2024-10-21)