Reproducible Research
Informacje ogólne
Kod przedmiotu: | 2400-DS2RR |
Kod Erasmus / ISCED: |
14.3
|
Nazwa przedmiotu: | Reproducible Research |
Jednostka: | Wydział Nauk Ekonomicznych |
Grupy: |
Anglojęzyczna oferta zajęć WNE UW Przedmioty kierunkowe do wyboru - studia II stopnia IE - grupa 2 (2*30h) Przedmioty obowiązkowe dla II roku Data Science and Business Analytics |
Punkty ECTS i inne: |
4.00
|
Język prowadzenia: | angielski |
Rodzaj przedmiotu: | obowiązkowe |
Skrócony opis: |
The main objective of the course is to present the key concepts of the research reproducibility, its importance in scientific and commercial R&D processes, and to provide students with the basic practical knowledge of a few most popular in the industry modern reproducibility tools. |
Pełny opis: |
The course consists of computer labs, with classes including a theoretical and practical part. The following topics will be discussed (not necessarily in the presented order): 1.Introduction: The three Rs: Repetition, Reproduction, Replication; Importance of reproducibility in science and the R&D process; Reasons for and consequences of lack of reproducibility; Some ways of handling non-reproducible research; Course grading overview. 2. Version control systems: Introduction to VCSs and git; Using git for version control and progress documentation; Teamwork via git; Working with GitHub; Project workflow; GitHub as the course repository and as ‘home’ for final projects. 3. Reporting tools: Introduction to Quarto and Markdown; Reproducible and automated reports; Reports with data inputs; Other formats 4. Writing reproducible code: Documenting code and versioning; Tools for managing software versions; Principles of writing clean and clear code. 5. Introduction to online repositories 6. Introduction to metaanalyses 7. Introduction to cloud computing: introduction to the tools and practices allowing the usage of remote computers for calculations, automating work 8. Introduction to the Linux shell |
Literatura: |
Lecture slides Numerous online resources |
Efekty uczenia się: |
Upon the completion of the course, student: 1. understands the general concept of research reproducibility; knows the reproducibility tools classification; understands which tool can be used in a given context; 2. has basic skills in computer tools allowing to achieve research reproducibility and replicability; has basic skills in modern best programming practices; has basic skills in the cloud development environment; is able to employ skills gained during the course while participating in modern scientific and commercial data science projects; is aware of the importance of reproducibility in data science, as well as in science and development in general; is aware that reproducibility tools are evolving rapidly and that constant training in this area is required to keep skills up to date; is aware of the trends in modern data science and IT development; |
Metody i kryteria oceniania: |
1. Active participation in the classes 2. Final project (in teams) |
Zajęcia w cyklu "Semestr letni 2022/23" (w trakcie)
Okres: | 2023-02-20 - 2023-06-18 |
![]() |
Typ zajęć: |
Konwersatorium, 30 godzin
|
|
Koordynatorzy: | Wojciech Hardy | |
Prowadzący grup: | Wojciech Hardy, Łukasz Nawaro | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Konwersatorium - Egzamin |
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Nauk Ekonomicznych.