Uniwersytet Warszawski, Wydział Nauk Ekonomicznych - Centralny System Uwierzytelniania
Strona główna

Statystyka matematyczna

Informacje ogólne

Kod przedmiotu: 2400-PP2ST
Kod Erasmus / ISCED: 14.3 Kod klasyfikacyjny przedmiotu składa się z trzech do pięciu cyfr, przy czym trzy pierwsze oznaczają klasyfikację dziedziny wg. Listy kodów dziedzin obowiązującej w programie Socrates/Erasmus, czwarta (dotąd na ogół 0) – ewentualne uszczegółowienie informacji o dyscyplinie, piąta – stopień zaawansowania przedmiotu ustalony na podstawie roku studiów, dla którego przedmiot jest przeznaczony. / (0311) Ekonomia Kod ISCED - Międzynarodowa Standardowa Klasyfikacja Kształcenia (International Standard Classification of Education) została opracowana przez UNESCO.
Nazwa przedmiotu: Statystyka matematyczna
Jednostka: Wydział Nauk Ekonomicznych
Grupy: Przedmioty obowiązkowe dla II r. studiów licencjackich - Ekonomia Międzynarodowa
Przedmioty obowiązkowe dla II r. studiów licencjackich - Ekonomia Przedsiębiorstwa
Przedmioty obowiązkowe dla II r. studiów licencjackich - Finanse, Inwestycje i Rachunkowość
Przedmioty obowiązkowe dla II r. studiów licencjackich - Informatyka i Ekonometria
Przedmioty obowiązkowe dla II r. studiów licencjackich (Ekonomia) - program wspólny
Przedmioty obowiązkowe dla II r.licencjackich: Ekonomia, specjalność: MSEMen
Punkty ECTS i inne: 5.00 Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: polski
Rodzaj przedmiotu:

obowiązkowe

Skrócony opis:

Na wykładzie przedstawione będą podstawowe wiadomości i pojęcia statystyki opisowej i statystyki matematycznej, czyli teorii wnioskowania statystycznego. Celem jest zarówno przygotowanie słuchaczy do dalszych studiów i pogłębiania wiedzy w tej dziedzinie, jak i do samodzielnego posługiwania się w praktyce standardowymi procedurami statystycznymi (umiejętność budowy modelu statystycznego, poprawnoego sformułowania problemu, obliczania i interpretacji podstawowych miar statystyki opisowej i miar dynamiki zjawisk, umiejętność stosowania podstawowych metod wnioskowania statystycznego). Wykład zawierać będzie, oprócz zarysu teorii, przykłady zastosowań. Do zrozumienia wykładu istotne będzie wcześniejsze opanowanie przez słuchaczy wiadomości z rachunku prawdopodobieństwa, w zakresie jednosemestralnego kursu.

Pełny opis:

Szczegółowy program:

1, 2. Podstawowe pojęcia statystyki opisowej: populacja, cecha, rozkład cechy. Graficzna prezentacja danych (szereg rozdzielczy, histogram częstości, histogram liczności, częstości skumulowanych). Dystrybuanta empiryczna, podstawowe charakterystyki próbkowe, miary położenia i rozproszenia, statystyka pozycyjna, średnia, moda, mediana, kwartyle z próby, wariancja i odchylenie standardowe z próby, miary asymetrii, wykres skrzynkowy. Badanie statystyczne, pełne i reprezentacyjne.

3. Miary dynamiki zjawisk, indeksy statystyczne.

4. Model statystyczny (przykłady) i podstawowe zadania wnioskowania statystycznego (problem estymacji, testowania hipotez, predykcji), pojęcie statystyki, dystrybuanta empiryczna i statystyki próbkowe jako przykłady statystyk. Średnia i wariancja z próby w rozkładzie normalnym, rozkład chi kwadrat, t-Studenta i F-Fishera-Snedecora.

5. Estymacja punktowa, metody: metoda momentów, kwantyli, metoda największej wiarogodności (ENW). Przykłady.

6. Własności estymatorów: obciążenie estymatora, estymatory nieobciążone, mierniki jakości estymatora, ryzyko estymatora przy kwadratowej funkcji straty, nierówność informacyjna, efektywność estymatora.

7. Własności asymptotyczne (zgodność, estymatory asymptotycznie normalne - przykład ENW, efektywność asymptotyczna)

8. Estymacja przedziałowa: pojęcie przedziału ufności na zadanym poziomie ufności, przedziały ufności dla parametrów w rozkładzie normalnym, asymptotyczne przedziały ufności, przedział ufności dla wskaźnika struktury p, przedziały ufności w oparciu o ENW.

9. Weryfikacja hipotez statystycznych, pojęcia: hipoteza i test statystyczny, obszar krytyczny testu, błąd I i II rodzaju, poziom istotności, p-value.

10. Moc testu, test jednostajnie najmocniejszy, lemat Neymana-Pearsona, przykłady testów (prosta hipoteza zerowa i alternatywna).

11. Testy oparte na ilorazie wiarogodności, testowanie hipotez dotyczących parametrów w rozkładzie normalnym jako przykłady testu opartego na ilorazie wiarogodności, porównywanie dwóch populacji, test równości wartości oczekiwanych i równości wariancji w modelu normalnym.

12. Porównywanie więcej niż dwóch populacji, test jednoczynnikowej analizy wariancji. Asymptotyczne własności testu ilorazowego, testy dla hipotezy dotyczącej wskaźnika struktury

13. Testy zgodności: test Kołmogorowa, test zgodności chi-kwadrat, test niezależności chi-kwadrat.

14, 15. Model bayesowski i podstawy wnioskowania bayesowskiego, rozkład a priori i a posteriori, ich interpretacja, estymator bayesowski przy kwadratowej funkcji straty, bayesowski przedział ufności.

15. Uzupełnienia. Podsumowanie.

Literatura:

OBOWIĄZKOWA

- W.Niemiro, Rachunek Prawdopodobieństwa i Statystyka Matematyczna, wyd. SNS, 1999 (część II: Statystyka Matematyczna). [Sygn. Bibl. WNE UW: 33103]

- J.Koronacki i J. Mielniczuk, Statystyka, WNT 2004

- J.Jóźwiak i J. Podgórski, Statystyka od podstaw, PWE 1994

ZBIORY ZADAŃ

- W. Krysicki i in., Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, PWN, 1998 (część II: Statystyka Matematyczna). [Sygn. Bibl. WNE UW: 27978/2 (1994 r.), S-9275 a-z (1998 r.), S-8969 a-n, 30479/2]

- H. Kassyk-Rokicka, Statystyka, zbiór zadań, 2005 lub inne wydania

- J. Greń, Statystyka Matematyczna, modele i zadania, PWN, 1978. [Sygn. Bibl. WNE UW: S-1060 b (1976 r.), 15489 (1978 r.)]

A. Boratyńska, Zadania ze statystyki matematycznej, skrypt w ksero na WNE UW

Efekty uczenia się:

WIEDZA

Student zna i rozumie wybrane pojęcia statystyki matematycznej, z których najważniejsze to parametry rozkładu zmiennej losowej, rozkład zmiennej losowej, podstawowe charakterystyki rozkładu zmiennej losowej oraz typy zmiennych losowych. Zna teorię wnioskowania statystycznego, estymację punktową, estymację przedziałową, teorię weryfikacji hipotez statystycznych. Student zna modele parametryczne i nieparametryczne służące weryfikacji hipotez dotyczących rozkładu teoretycznego. Zna teorię wnioskowania bayesowskiego.

UMIEJĘTNOŚCI

Student potrafi wykorzystywać narzędzia statystyki matematycznej. Potrafi posługiwać się wybranymi procedurami statystycznymi. Student potrafi dokonać opisu zjawisk losowych za pomocą formalnego języka statystyki. Student potrafi wykorzystać metody analityczne do poprawnego sformułowania i rozwiązania zadań z zakresu statystyki matematycznej. Student potrafi skonstruować nieobciążony i efektywny estymator parametru z wykorzystaniem wybranej metody. Student potrafi oszacować parametr przy pomocy przedziału ufności. Potrafi zweryfikować hipotezę dotyczącą rozkładu teoretycznego.

KOMPETNCJE

Student ma świadomość zastosowań teorii i metod statystyki matematycznej w ekonomii i naukach pokrewnych.

KU03, KK01, KU02

Metody i kryteria oceniania:

Student zalicza ćwiczenia (100%) na podstawie 2 kolokwiów (60%), niezapowiedzianych kartkówek (20%) i prac domowych (20%), a przedmiot kończy się egzaminem pisemnym. Ocena końcowa to 1/3 oceny z ćwiczeń + 2/3 oceny z egzaminu

Zajęcia w cyklu "Semestr letni 2021/22" (zakończony)

Okres: 2022-02-21 - 2022-06-15
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć:
Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Agata Boratyńska, Maria Ogonek
Prowadzący grup: Agata Boratyńska, Małgorzata Kalbarczyk, Katarzyna Lada, Maria Ogonek, Łukasz Rajkowski, Rafał Walasek, Kateryna Zabarina
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie na ocenę
Wykład - Egzamin

Zajęcia w cyklu "Semestr letni 2022/23" (jeszcze nie rozpoczęty)

Okres: 2023-02-20 - 2023-06-18
Wybrany podział planu:


powiększ
zobacz plan zajęć
Typ zajęć:
Ćwiczenia, 30 godzin więcej informacji
Wykład, 30 godzin więcej informacji
Koordynatorzy: Maria Ogonek
Prowadzący grup: Małgorzata Kalbarczyk, Katarzyna Lada, Maria Ogonek, Kateryna Zabarina
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Egzamin
Ćwiczenia - Zaliczenie na ocenę
Wykład - Egzamin
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Nauk Ekonomicznych.
ul. Długa 44/50
00-241 Warszawa
tel: +48 22 55 49 126 https://www.wne.uw.edu.pl/
kontakt deklaracja dostępności USOSweb 6.8.0.0-4 (2022-09-15)