Analiza matematyczna I.2 (potok I)
Informacje ogólne
Kod przedmiotu: | 1000-112bAM2a |
Kod Erasmus / ISCED: |
11.1
|
Nazwa przedmiotu: | Analiza matematyczna I.2 (potok I) |
Jednostka: | Wydział Matematyki, Informatyki i Mechaniki |
Grupy: |
Przedmioty obowiązkowe dla I roku JSIM Przedmioty obowiązkowe dla I roku matematyki Przedmioty obowiązkowe dla I roku matematyki specjalności MSEM |
Punkty ECTS i inne: |
10.00
|
Język prowadzenia: | polski |
Kierunek podstawowy MISMaP: | fizyka |
Rodzaj przedmiotu: | obowiązkowe |
Założenia (opisowo): | Oczekuje się dobrej znajomości zagadnień ujętych w sylabusie przedmiotu Analiza matematyczna I.1. |
Skrócony opis: |
Przedmiot jest kontynuacją wykładu z Analizy Matematycznej I.1. Materiał obejmuje rachunek różniczkowy i całkowy jednej zmiennej: od pojęcia pochodnej i jego zastosowań (reguła de l’Hospitala, wielomiany Taylora), poprzez teorię ciągów i szeregów funkcyjnych (kryterium Weierstrassa zbieżności jednostajnej, twierdzenie Arzeli-Ascoliego), własności szeregów potęgowych, po teorię całki Riemanna, własności całek niewłaściwych i ich zastosowania (obliczanie długości krzywych klasy C1, funkcja Γ, wzór Wallisa). |
Pełny opis: |
1. Algebraiczne własności różniczkowania (pochodna sumy, różnicy, iloczynu, ilorazu), pochodna złożenia funkcji i pochodna funkcji odwrotnej. Twierdzenia o wartości średniej (Rolle'a, Lagrange'a i Cauchy'ego). Kryteria monotoniczności funkcji różniczkowalnych. Reguła de l'Hospitala. Ekstrema lokalne. Pochodne drugiego i wyższych rzędów, wzór Taylora z resztą w postaci Peano, Lagrange'a i Cauchy'ego. Wielomiany Taylora funkcji wykładniczej, logarytmu, sinusa, kosinusa, arcus sinusa i arcus tangensa. Punkty przegięcia. Warunek dostateczny na istnienie ekstremum lokalnego lub punktu przegięcia. Funkcje klasy Ck. 2. Ciąg funkcyjny i szereg funkcyjny. Zbieżność punktowa i zbieżność jednostajna ciągu i szeregu funkcyjnego. Jednostajny warunek Cauchy'ego, kryterium Weierstrassa jednostajnej zbieżności szeregu funkcyjnego. Twierdzenie o ciągłości granicy jednostajnie zbieżnego ciągu funkcji ciągłych. Różniczkowanie ciągów i szeregów funkcyjnych, twierdzenie Weierstrassa o jednostajnym przybliżaniu funkcji ciągłych wielomianami (np. wielomiany Bernsteina). Twierdzenie Arzeli-Ascoliego. Przykład funkcji ciągłych nigdzie nieróżniczkowalnych. 3. Szereg potęgowy, promień zbieżności (wzór Cauchy’ego-Hadamarda) i przedział zbieżności. Zbieżność jednostajna i bezwzględna szeregu potęgowego. Twierdzenie Abela o ciągłości szeregu potęgowego w końcu przedziału. Rozwinięcia funkcji elementarnych. 4. Całka nieoznaczona (funkcja pierwotna) i całka oznaczona funkcji ciągłej. Całkowanie przez podstawienie i przez części. Reszta całkowa we wzorze Taylora. Całkowanie funkcji wymiernych (ułamki proste), wyrażeń trygonometrycznych i wyrażeń z pierwiastkami kwadratowymi. Sumy Riemanna, aproksymacja całki z funkcji ciągłej sumami Riemanna. Całkowalność w sensie Riemanna funkcji ciągłej i interpretacja geometryczna całki. Długość wykresu funkcji jako kres górny długości łamanych wpisanych w ten wykres. Płaskie krzywe parametryczne i wektory styczne do nich, wzór całkowy na długość wykresu funkcji klasy C1 , długość krzywej parametrycznej. Całki niewłaściwe i kryteria ich zbieżności, kryterium całkowe zbieżności szeregu liczbowego. Całki z parametrem i różniczkowanie całki względem parametru w granicach całkowania. Całka Riemanna a zbieżność jednostajna. Funkcja Γ Eulera, wzory Wallisa i Stirlinga. Przykładowe zastosowania rachunku całkowego, np. obliczanie pól i objętości brył obrotowych. |
Literatura: |
1. A. Birkholc, Analiza matematyczna dla nauczycieli, PWN, Warszawa 1977. 2. B. P. Demidowicz, Zbiór zadań z analizy matematycznej, Naukowa Książka, Lublin 1992 (tom I) i 1993 (tomy II i III). 3. G. M. Fichtenholz, Rachunek różniczkowy i całkowy. Tom 2-3, PWN, Warszawa 2007. 4. W. Kaczor, M. Nowak, Zadania z Analizy Matematycznej 2. Funkcje jednej zmiennej - rachunek różniczkowy, PWN, Warszawa 2005. 5. K. Kuratowski, Rachunek różniczkowy i całkowy, PWN, Warszawa 1979. 6. W. Pusz, K. Strasburger, Zbiór zadań z analizy matematycznej, Wydział Fizyki UW, Warszawa 1982. 7. W. Rudin, Podstawy analizy matematycznej, PWN, Warszawa 2000. 8. P. Strzelecki, Analiza Matematyczna I (skrypt wykładu), http://dydmat.mimuw.edu.pl/sites/default/files/wyklady/analiza-matematyczna-i.pdf Dodatek do skryptu (aut. M. Jóźwikowski, S. Kolasiński), http://dydmat.mimuw.edu.pl/sites/default/files/wyklady/analiza-matematyczna-i-zadania.pdf |
Efekty uczenia się: |
Student: 1. Potrafi uzasadnić poprawność swoich rozumowań. Operuje przykładami. 2. Zna metody obliczania pochodnych i najważniejsze twierdzenia rachunku różniczkowego funkcji jednej zmiennej rzeczywistej, w tym twierdzenie Lagrange'a o wartości średniej, wzór Taylora i regułę de l'Hospitala. Stosuje typowe narzędzia rachunku różniczkowego funkcji jednej zmiennej, m.in. wyznacza ekstrema lokalne, przedziały monotoniczności i wypukłości oraz kresy funkcji zmiennej rzeczywistej, a także rozwiązuje zadania optymalizacyjne w oparciu o badania ekstremów. Posługuje się wzorem Taylora do obliczania granic. 3. Zna pojęcie zbieżności punktowej i jednostajnej ciągu i szeregu funkcyjnego, kryterium Weierstrassa zbieżności jednostajnej, twierdzenie o ciągłości granicy zbieżnego jednostajnie ciągu/szeregu funkcji ciągłych i twierdzenie o różniczkowaniu ciągów funkcyjnych. Potrafi badać zbieżność jednostajną ciągów funkcyjnych i dowodzić ciągłości lub różniczkowalności granic takich ciągów. 4. Zna pojęcie szeregu potęgowego i najważniejsze własności funkcyjne sumy takiego szeregu. Zna wzór Cauchy'ego-Hadamarda. Określa promień zbieżności szeregu potęgowego; potrafi wykorzystać twierdzenie o różniczkowalności szeregów funkcyjnych do sumowania konkretnych szeregów. 5. Zna pojęcie funkcji pierwotnej i całki nieoznaczonej; potrafi całkować przez części i przez podstawienie. 6. Zna pojęcie całki oznaczonej, definicję całki Riemanna i jej interpretację geometryczną. Zna związek całki oznaczonej z nieoznaczoną. Stosuje narzędzia rachunku całkowego w zadaniach o charakterze geometrycznym. Oblicza pole pod wykresem oraz długość krzywej. 7. Zna pojęcie całki niewłaściwej oraz przykłady funkcji, zdefiniowanych za pomocą takich całek. Wykorzystując różne metody bada zbieżność całek niewłaściwych. |
Metody i kryteria oceniania: |
Ocena końcowa będzie wystawiona podstawie punktacji z ćwiczeń, dwóch kolokwiów oraz egzaminu. |
Zajęcia w cyklu "Semestr letni 2023/24" (zakończony)
Okres: | 2024-02-19 - 2024-06-16 |
Przejdź do planu
PN CW
CW
WT WYK
CW
CW
CW
CW
CW
CW
ŚR CZ WYK
CW
PT CW
CW
CW
CW
CW
CW
CW
|
Typ zajęć: |
Ćwiczenia, 60 godzin
Wykład, 60 godzin
|
|
Koordynatorzy: | Marek Bodnar | |
Prowadzący grup: | Marek Bodnar, Michał Jóźwikowski, Agnieszka Kałamajska, Michał Kotowski, Michał Miśkiewicz, Piotr Mormul, Mikołaj Rotkiewicz, Marta Strzelecka, Marta Szumańska | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Wykład - Egzamin |
Zajęcia w cyklu "Semestr letni 2024/25" (jeszcze nie rozpoczęty)
Okres: | 2025-02-17 - 2025-06-08 |
Przejdź do planu
PN WT ŚR CZ PT |
Typ zajęć: |
Ćwiczenia, 60 godzin
Wykład, 60 godzin
|
|
Koordynatorzy: | Marta Szumańska | |
Prowadzący grup: | Tomasz Cieśla, Galina Filipuk, Krystian Kazaniecki, Piotr Mormul, Marta Szumańska, Anna Zatorska-Goldstein, Henryk Żołądek | |
Lista studentów: | (nie masz dostępu) | |
Zaliczenie: |
Przedmiot -
Egzamin
Wykład - Egzamin |
Właścicielem praw autorskich jest Uniwersytet Warszawski, Wydział Nauk Ekonomicznych.